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High-vector-densityplanar velocity fields were obtained for a weakly compressible
mixing layer using particle image velocimetry (PIV). The velocity ratio of the mixing
layer was 0.53, the density ratio was 0.67, and the convective Mach number was
0.38. At the location where the PIV images were obtained, Rex = 3.7 × 106 and
Reδω

= 1.8 × 105. The instantaneous planar velocity fields fall into three regimes
characterized by the size and number of large-scale structures present. The large-
scale rollers are either circular or elliptical, with the elliptical rollers having, in
general, horizontal major axes. The transverse velocity fluctuations and Reynolds
shear stress are suppressed for the weakly compressible mixing-layer as compared to
the incompressible case. The spatial correlations of velocity fluctuations also occupy
a smaller fraction of the mixing-layer thickness than for an incompressible mixing
layer. The linear stochastic estimate of a roller structure is elliptical with the major
axis oriented in the streamwise direction and with an eccentricity greater than for the
incompressible case. The linear stochastic estimate of a braid suggests that the braids
are vertically oriented, as opposed to the oblique orientation seen in incompressible
mixing layers. In addition, the braids in the weakly compressible case have a vertically
oriented stagnation line, as opposed to the braids in the incompressible mixing layer
where stagnation occurs at a point.

1. Introduction
Although it is a geometrically simple flow field, the mixing layer (or shear layer)

is of great practical importance since it appears often in engineering practice. The
boundary region of a jet, the slip-stream behind a wing, and the interface between a
recirculation region and a free stream are just a few examples of flow fields containing
mixing layers. A typical geometry for a mixing-layer experiment is shown in figure 1.
The subscript 1 is used to indicate the properties of the high-speed stream, while the
subscript 2 denotes the low-speed stream properties. The velocity profile shown is
that of the mean streamwise velocity.

Incompressible mixing layers have been studied experimentally since the 1940s, and
a large amount of data exists for a wide range of mixing-layer attributes including
growth rate, mean and fluctuating velocities, vorticity, scalar transport and mixing, as
well as the effects of varying flow parameters on these attributes. While not nearly as
extensive, similar experimental data exist for compressible mixing layers. One type of
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Figure 1. Diagram of a mixing layer.

measurement that is lacking for both incompressible and compressible mixing layers,
however, is instantaneous planar velocity measurements.

Experiments (Johnson 1971; Brown & Roshko 1974; Bogdanoff 1984) have demon-
strated that even for identical velocity and density ratios, compressible mixing layers
grow more slowly than incompressible mixing layers. Further experimentation (Ikawa
& Kubota 1974; Chinzei et al. 1986; Messersmith et al. 1988; Papamoschou & Roshko
1988; Elliot & Samimy 1990) has shown that it is a compressibility effect, and not
just density ratio differences, between the two free streams that accounts for the lower
growth rates of compressible mixing layers.

Bogdanoff (1982) introduced the convective Mach number Mc as a parameter for
isolating the effects of compressibility in mixing layers. When the specific heat ratios,
γ1 and γ2, of the two streams are equal, the convective Mach numbers of the two
streams are equal, and are given by

Mc =
u1 − u2

a1 + a2

, (1)

where u1 and u2 are the velocities of the high-speed and low-speed free streams, and
a1 and a2 are their respective speeds of sound. For Mc less than approximately 0.6,
the convective Mach number effectively collapses most of the growth rate data for
compressible mixing layers to a single curve when the growth rates are normalized
by the growth rate of an incompressible mixing layer with identical velocity and
density ratios. The convective Mach number is not effective at collapsing data for
extreme density ratios, however. At mid- to high-subsonic convective Mach numbers,
the measured convective velocity begins to deviate from that predicted by analytic
models (Papamoschou 1991).

In their seminal paper on incompressible mixing layers, Brown & Roshko (1974)
found that large-scale two-dimensional roller structures dominate the flow field. Large-
scale structures are also observed in compressible mixing layers, with the topology
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and behaviour of these structures highly dependent on the level of compressibility (i.e.
the convective Mach number). Using a Mie scattering technique, Clemens & Mungal
(1992) and Messersmith & Dutton (1996) found that at low Mc, two-dimensional
Brown–Roshko-type roller structures dominate the mixing layer. However, as the
convective Mach number is increased, these two-dimensional structures first become
obliquely oriented in the spanwise direction, and then as Mc becomes large, the
large-scale structures become highly three-dimensional, elliptically or polygonally
shaped, and jagged with long filament-like braids. Unlike the roller structures found in
incompressible mixing layers, these three-dimensional structures are not well organized
spatially. Similar results were found by Elliott, Samimy & Arnette (1992) using filtered
Rayleigh scattering and in additional experiments by Clemens & Mungal (1995) using
planar laser-induced fluorescence.

Some studies of the temporal evolution of large-scale structures in compressible
mixing layers have also been performed. Mahadevan & Loth (1994) used high-speed
schlieren photography and laser sheet cinematography to visualize a shear layer
with Mc = 0.76. They found that large-scale structures stretch and tilt down as they
convect downstream. Elliott, Samimy & Arnette (1995) performed double-pulsed
Rayleigh scattering experiments on compressible mixing layers with convective Mach
numbers of 0.51 and 0.86. In their lower convective Mach number case, they observed
large-scale structure behaviour similar to that seen in incompressible mixing layers.
At this convective Mach number, roller-structure pairing was observed. However, at
the higher convective Mach number, roller-structure pairing was not seen. Instead,
the large-scale structures were observed to tear and stretch.

Velocity measurements have also been made in compressible mixing layers using
laser-Doppler velocimetry (LDV). Goebel & Dutton (1991) performed velocity
measurements over a range of convective Mach numbers. One of their major findings
was that the transverse turbulence intensity and Reynolds shear stress decreased
with increasing convective Mach number, while the streamwise turbulence intensity
remained nearly constant. Similar results were obtained by Samimy & Elliott (1990),
although they found that the streamwise turbulence intensity decreased somewhat
with increasing Mc.

Planar velocity data for compressible mixing layers are virtually non-existent. To our
knowledge, the only experiments that have been performed to date are those by Urban
& Mungal (1997, 1998) and Urban, Watanabe & Mungal (1998). Their experiments
consisted of PIV measurements for compressible mixing layers over a range of
convective Mach numbers from 0.24 up to 0.79. They found that at low convective
Mach numbers, the instantaneous vorticity fields contained discrete peaks, indicative
of large-scale structures. However, as the convective Mach number was increased, the
vorticity field contained thin sheets of vorticity rather than peaks, suggesting a break-
down in the large-scale structures. They also measured turbulent velocity fluctuations
and Reynolds stresses and found the same compressibility effects as Goebel & Dutton
(1991). The work presented here is for a different convective Mach number from the
experiments of Urban et al. and also contains different analyses from those performed
by Urban et al. (spatial correlations and linear stochastic estimates). In addition, data
have been collected for the incompressible case for comparison purposes.

Because of the high Reynolds numbers found in compressible mixing layers,
numerical studies of compressible mixing layers have thus far concentrated on linear
stability analysis, and large-eddy simulations, with only a few workers attempting
direct numerical simulations at low Reynolds numbers. Sandham & Reynolds
(1989) performed linear stability analysis for a wide variety of mixing layers,
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both compressible and incompressible, and also a two-dimensional direct numerical
simulation. The Reynolds numbers for these calculations were small, with Reδω

= 400.
In their stability analysis, they found that oblique waves become the dominant
instabilities above Mc = 0.6. This could be the reason that Brown–Roshko-type
structures are not seen experimentally in high convective Mach number compressible
mixing layers. In their direct numerical simulation, Sandham & Reynolds found that
the vortices that do develop are elongated in the streamwise direction with respect to
the vortices found in incompressible mixing layers.

Other stability analyses have investigated the effect of increasing convective Mach
number or introducing disturbances on mixing-layer growth rate. Ragab & Wu (1989)
found that increasing convective Mach number reduces the growth rate of instability
modes, and thus decreases the growth rate of a compressible mixing layer. Grosch &
Jackson (1991) were able to double the growth rate of a compressible mixing layer
by introducing disturbance waves. Day, Reynolds & Mansour (1998) used a linear
stability analysis to study the effects of heat release, compressibility, equivalence ratio,
density ratio, and velocity ratio on the growth of instabilities in chemically reacting
mixing layers. Among their findings was that density ratio, convective Mach number
and heat release were the most important parameters in affecting the amplification of
instabilities, with equivalence ratio and velocity ratios being less important factors.

Sandham & Reynolds (1991) presented results from a true three-dimensional direct
numerical simulation of a temporally evolving turbulent compressible mixing layer.
They found that, as the convective Mach number is increased, the large-scale structures
that develop become more three-dimensional. They also found that mixing-layer
growth diminishes with increasing compressibility. They did not, however, present
comparisons of turbulent velocity statistics derived from their simulations with
experimental data. It is thus difficult to assess whether they truly were able to
model turbulence down to the smallest scales.

Vreman, Sandham & Luo (1996) also performed direct numerical simulations for
temporally evolving compressible mixing layers over a range of convective Mach
numbers from 0.2 to 1.2. They, too, observed a reduction in mixing-layer growth rate
with increasing compressibility. Their results suggest that reduced turbulent pressure
fluctuations are responsible for the reduced growth rate seen at higher convective
Mach numbers. They also found that the turbulence statistics in their simulations
agreed well with experimental results.

Freund, Moin & Lele (1997) performed a direct numerical simulation of a
temporally evolving annular mixing layer with convective Mach numbers ranging
from 0.1 to 0.8. One of their major findings was that with increasing convective Mach
number, the Reynolds stresses, with the exception of the streamwise normal stress,
were suppressed. They also found a relationship between mixing-layer growth rate
and pressure–strain rate correlation. Increasing convective Mach number suppresses
pressure fluctuations, which suppresses the pressure–strain rate correlation, leading to
reduced mixing-layer growth rate.

Because of the difficulties in performing direct numerical simulations on spatially
evolving mixing layers, turbulent simulations of such mixing layers are often done
using large-eddy simulation. Such a simulation was performed by Nelson & Menon
(1998). They tried to match the experimental results of Samimy, Reeder & Elliott
(1992) with their calculations. They found that their calculations for compressible
mixing layers agreed well with experiments for low convective Mach number, but
at higher convective Mach number, the results, while agreeing qualitatively with
experiments, were not quantitatively correct. For example, at high convective Mach
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number, the calculated turbulence intensities and Reynolds shear stress profiles had
the same shapes as the experimental results, but the values of the stresses were
different. In fact, their results were consistent with the experimental results of Goebel
& Dutton in that the streamwise turbulence intensity remained nearly constant with
increasing Reynolds number.

Although a large body of experimental results exists on compressible mixing layers,
instantaneous measurements of the velocity field are lacking. The work presented
here is an attempt to incorporate instantaneous planar velocity measurements
into the existing body of knowledge concerning compressible mixing layers. To
obtain these measurements, a series of particle image velocimetry (PIV) experiments
was performed. These velocity fields were then analysed to provide insight into
the characteristics and behaviour of large-scale structures found in the weakly
compressible mixing layer and the effects of compressibility on these structures.

The remainder of this paper is organized as follows. First, the experimental facility,
including the wind tunnel and test section, is introduced. Then details of the particle
image velocimetry used in the experiments, such as descriptions of the components
used and the capability of the system are discussed. The experimental results from
both schlieren photography and particle image velocimetry are then presented and
discussed. This discussion includes how the present findings fit into the context of
existing experimental and numerical results. Finally, the conclusions drawn from this
experimental study are summarized.

2. Experimental facilities and equipment
2.1. Wind tunnel

The flow facility designed for these experiments is of the blowdown-type. High-
pressure air is provided by an Ingersoll-Rand compressor that supplies 1200 SCFM
at an operating pressure of 115 p.s.i.g. The high-pressure air from this compressor
first flows into several interconnected pressure vessels with a total volume of 150 m3,
collectively known as the tank farm. The air from the tank farm enters the laboratory
through a 6 in diameter pipe. The flow to the test section is regulated using a 6 in
Fisher control valve; after passing through the control valve, the air enters the facility
stagnation chamber.

Figure 2 shows the test section used in the mixing-layer experiments. Two 3 in
diameter pipes supply air to the top (high-speed) and bottom (low-speed) streams. The
pipe to the bottom stream is fitted with a globe valve to allow for throttling. Each of
the two streams is conditioned by a combination of three screens and one honeycomb
insert to provide uniform flow and reduce the free-stream turbulence intensity. The
high-speed stream contains a converging–diverging nozzle designed for Mach 2 flow.
The low-speed stream contains a converging nozzle with a 6 : 1 area contraction ratio.
The two streams come together at the tip of the splitter plate. The splitter plate has
been machined such that it is only a few hundredths of a millimetre thick at its tip
with a 3◦ included angle between the two streams. The test section is 63.5 mm high,
102 mm wide and 356 mm long. Also, the test section has been designed with windows
on all four walls, thus providing optical access to all sides of the test section.

2.2. Seeding

For the PIV experiments, the flow must be seeded with particles that are small
enough to accurately follow the flow. The seeding used in these experiments was
titanium dioxide (TiO2) particles with an average diameter of 0.4 µm, as measured
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Figure 2. Mixing-layer facility schematic.

by Bloomberg (1989). An analysis of the dynamics of particles in a compressible
mixing layer was performed by Samimy & Lele (1991), and their results were used
to determine the effectiveness of the seed particles used in these weakly compressible
mixing-layer experiments. For the current experiments, the particle Stokes number
had a value of τ = 0.041. In their analysis, Samimy & Lele found that for τ < 0.05,
the error in velocity measurement owing to particle slip was negligible. Thus, for the
present experiments, the titanium dioxide particles should closely follow the flow.

Obtaining sufficient seed particle density and uniformity was very challenging in
performing these experiments. Initially, we injected the seed particles into each of the
free streams using tubes, but we found the seed uniformity using this injection scheme
to be unacceptable. Instead, we found that we achieved better seeding uniformity by
injecting the seed particles into the stagnation chamber. Using this technique, we were
eventually able to achieve a high enough seed density such that there were at least 5
particle images per interrogation spot (and usually, a great deal more), resulting in a
very high interrogation success rate.

2.3. Particle image velocimetry system

The particle image velocimeter used in the current experiments consists of separate
acquisition and interrogation systems. The acquisition system includes the lasers,
beam-shaping optics, and 35 mm camera used to obtain the particle image
photographs of the flow field. The interrogation system is comprised of the CCD
camera, light source, positioning system, controlling computer, and digital signal
processors necessary to calculate vector fields from the PIV photographs.

The acquisition system used in these experiments was designed explicitly for high-
speed flows, and therefore contains several features that are different from those
found in a system used for low-speed flows. The lasers used in the acquisition system
are a pair of Continuum YG681C-10 Nd:YAG lasers that emit 532 nm light at a
pulse repetition rate of 10 Hz. The high pulse energy (550 mJ per pulse) of these lasers
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is necessary to illuminate the small particles used in these experiments. The short
duration (6–8 ns) of the laser pulses is desirable because this eliminates any blurring
of the particle images due to motion during the pulse.

The PIV photographs were obtained using a Canon EOS 35 mm film camera. The
camera was fitted with a 100 mm focal length lens. This lens has a maximum f # of
2.8, but for the weakly compressible mixing-layer experiments, the lens aperture was
partially closed, resulting in f # = 6.7.

A critical factor in the acquisition of the PIV photographs is accurate timing of
the laser pulses. The timing of the acquisition system was controlled by a Stanford
Research Systems DG535 digital delay pulse generator. A small uncertainty in the time
separation of the laser pulses is present owing to the pulse jitter of each laser, which
is approximately 1 ns. The DG535 has a timing resolution of 5 ps, but this is much
smaller than the pulse jitter and can thus be ignored. For the weakly compressible
mixing-layer experiments, a time separation of 400 ns between laser pulses was used,
resulting in an experimental uncertainty due to pulse jitter of ±0.25%.

The interrogation system used to compute the velocity vector fields from the PIV
photographs is controlled by a 90 MHz Pentium computer. The photographic negative
is placed in a glass sandwich and small regions of the photograph are imaged onto
a CCD camera. A two-axis positioner controls the location of the negative, allowing
different regions of the recorded flow field to be imaged. A frame grabber residing
within the host computer digitizes the image, and the digitized image is then sent to a
digital signal processing (DSP) board containing two Texas Instruments TMS320C44
processors. The DSP board performs a cross-correlation analysis on the digitized
image to find the velocity vector at each interrogation spot location. The system is
capable of computing about 6 vectors per second.

The experimental uncertainty of the PIV measurements must be addressed. In a
detailed study of interrogation accuracy, Prasad et al. (1988) found that when particle
images are well resolved during digitization, the uncertainty of the measurement is
equal to roughly one-tenth of the particle image diameter. This uncertainty is due to
the error associated with locating the particle location to subpixel resolution using
a centroidal method. A particle image is considered to be well resolved when the
ratio of the particle image diameter to the size of the CCD pixel when projected
back onto a photograph is dimage/dpixel = 4. In the experiments presented here, the
particle diffraction-limited spot size is 40 µm. Each 128 × 128 pixel interrogation spot
is 1200 µm × 1200 µm, thus dpixel = 9.38 µm. It follows then that dimage/dpixel = 4.3,
so that the images are well resolved. Approximating the measurement uncertainty as
one-tenth of the particle image diameter yields an uncertainty of 4 µm. In the current
experiments, the bottom free-stream velocity corresponds to a displacement of 113 µm
and the top free-stream velocity corresponds to a displacement of 216 µm. Thus, for
these experiments, the measurement uncertainty is ±3.5% for the bottom free stream
and ±1.9% for the top free stream.

3. Results and discussion
For the weakly compressible mixing-layer experiments, the top and bottom free

stream velocities were set at 510 m s−1 and 270 m s−1, respectively. This corresponds to
a velocity ratio of r = u2/u1 = 0.53. Because static temperature is dependent on Mach
number in homenergetic flow, the two free streams have different static temperatures,
and thus different densities. For the flow conditions used in these experiments, the
density ratio was s = ρ2/ρ1 = 0.67.
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Figure 3. Schlieren photograph of the weakly compressible mixing layer.

As described earlier, the parameter that is used to quantify compressibility effects in
mixing layers is the convective Mach number. For these experiments, the convective
Mach number is 0.38. Compressibility effects begin at approximately Mc = 0.3, but
do not become dominant until around Mc =0.6 (Dutton 1997). Thus, in these
experiments, there should be some compressibility effects present, but these effects
should be rather weak. Even so, the planar velocity measurements presented and
discussed below show some significant differences from corresponding results for
incompressible mixing layers.

3.1. Schlieren photography

A composite schlieren photograph of the weakly compressible mixing layer is shown in
figure 3. Little evidence of large-scale turbulent structure can be seen in the photograph
until the downstream half of the flow field. While some braid-like structure is present
in this region, dominant rounded Brown–Roshko rollers are clearly not evident.

Among the other features visible in this figure are weak disturbance waves in the
top (supersonic) free stream. There is a disturbance wave emanating from a point on
the top wall upstream of the tip of the splitter plate that then propagates downstream.
This wave is caused by the seam where the top window frame fits into the top wall
of the test section. Another disturbance, a weak oblique shock wave, is formed at the
tip of the splitter plate, and it also propagates downstream, reflecting off both the
top wall of the tunnel and the mixing layer. This oblique shock wave is caused by
the slight mismatch in static pressure at the splitter plate tip (which can vary slightly
with time) and by the 3◦ angle of convergence of the two free streams at the tip, as
well as the confinement effects on the supersonic free stream owing to the presence
of the top wall of the wind tunnel. A final disturbance is observed originating just
upstream of the location where the two photographs are spliced together. This is
formed at the location where the top window is epoxied into the window frame. Since
there is no perceptible turning of the mixing layer at the locations where all these
disturbance waves intercept it, each of the waves is deemed to be weak. However,
the intermittent nature of the wave generated at the splitter plate tip does influence
the velocity measurements in the top free stream to a small extent, as will be shown
shortly. The intermittent nature of the waves is a possible concern, because the waves
could affect the nature of both the large-scale turbulent structures and entrainment.
However, because the measured mixing-layer growth rate agrees well with previous
experiments, we believe that such effects are small.

An estimate of mixing-layer growth is determined from the schlieren photograph.
First, an estimate of the ratio of the visual thickness of the mixing layer, as
measured from the schlieren photograph, to the vorticity thickness of the weakly
compressible mixing layer, as determined using PIV measurements, must be made.
At the location where the PIV photographs were obtained, the vorticity thickness of
the mixing layer was found to be 13.5 mm, and the visual mixing-layer thickness in
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the schlieren photograph is 17 mm, thus, δω/δvis = 0.79. This ratio is assumed to be
constant over the entire range of the schlieren photograph. The growth rate for the
weakly compressible mixing layer is then estimated from the schlieren photograph
as dδω/dx =0.038. According to Papamoschou & Roshko (1988) and Dutton (1997),
the expected vorticity-thickness growth rate for an incompressible mixing layer can
be calculated using (

dδω

dx

)
incompressible

= 0.165
(1 − r)(1 + s)1/2

2(1 + rs)1/2
, (2)

which, for the present mixing-layer experiment, yields dδω/dx = 0.049. Thus, the
growth rate of the current mixing layer is only 78% of the growth rate for an
incompressible mixing layer with identical velocity and density ratios. This growth-
rate reduction agrees well with previous experimental results for convective Mach
numbers near the current 0.38 value (Dutton 1997).

3.2. Particle image velocimetry measurements

3.2.1. Measurement parameters

An ensemble of 37 PIV velocity vector fields was obtained at a location 220 mm
downstream of the tip of the splitter plate. The size of this ensemble was limited
because of the difficulty of obtaining uniform and sufficient seed particle density to
obtain successful PIV vector fields in high-speed flows. An interrogation spot size of
1.2 mm was used, and with 50% overlap between adjacent interrogation spots, this
results in a spatial resolution of 0.6 mm in both the x- and y-directions. The vector
fields presented here measure 70 × 70 vectors.

As mentioned previously, the vorticity thickness of the weakly compressible mixing
layer at the measurement location is 13.5 mm. Thus, there are 22.5 velocity vectors
measured across the thickness of the mixing layer, providing good spatial resolution
of the large-scale turbulence. At this downstream location, the Reynolds numbers
based on distance from the splitter-plate tip and local mixing-layer vorticity thickness
are Rex = 3.7 × 106 and Reδω

=1.8 × 105, respectively. Goebel & Dutton (1991) found
in their compressible mixing-layer experiments that self-similarity was achieved for
Reδω

> 105. Thus, it is safe to assume that in the current experiment, the mixing layer
is fully developed with respect to both mean and turbulence quantities.

3.2.2. Instantaneous velocity field results

A typical instantaneous velocity field for the weakly compressible mixing layer is
shown in figure 4. In this vector field and in all vector fields presented herein, the mean
free-stream velocity of 390 m s−1, which approximates the expected convective velocity,
has been subtracted from each of the vectors to make the large-scale structures more
apparent. The coordinate system used in the vector plots is such that the tip of the
splitter plate is at (0,0). In figure 4, two large Brown–Roshko-like roller structures can
be seen near the left and right centre of the image with a braid region between them. In
this image and other images of the mixing layer, the presence of three-dimensionality
and small-scale structures can make identification of large-scale structures difficult.

Evidence of Brown–Roshko-like rollers structures in a compressible mixing layer
has been reported before. In direct numerical simulations by Sandham & Reynolds
(1991) of a temporally evolving compressible mixing layer with Mc =0.4 (very close
to that of the present experiment), roller structures were very clearly observed as well
as the braid regions between them. Of course, their simulations were for Reδω

= 400
compared to Reδω

= 1.8 × 105 in the present experiment, so the simulation did
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Figure 4. A typical weakly compressible mixing-layer vector field. This velocity field is in the
first regime.

not contain the small-scale structure of the PIV vector fields, but the large-scale
structures were visible nevertheless. Similarly, pressure correlation measurements by
Samimy et al. (1992) indicated the presence of structures at Mc = 0.51 similar to those
in the incompressible case, only less organized.

Clemens & Mungal (1995) also observed the presence of Brown–Roshko-like
structures in their planar Mie scattering experiments. They found evidence of very
persistent Brown–Roshko structures up to Mc = 0.28, and these structures were still
evident at Mc = 0.42, although they were much more disorganized. At Mc = 0.62, they
reported that the Brown–Roshko structures were no longer identifiable.

Another feature of the flow field that can be observed in figure 4 is the presence of
a weak oblique shock wave in the top free stream. On the left-hand side of the vector
field, the top free stream vectors have a small downward velocity component. However,
a weak oblique shock wave can be seen beginning near x = 228 mm, y = 6mm and
extending diagonally up into the top free stream. This shock wave has the effect
of slightly turning the flow such that the velocity vectors in the top free stream to
the right of the shock wave have a small upward velocity component. The shock
wave would hardly be visible at all if the large convective velocity had not been
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Figure 5. A velocity vector field for the weakly compressible mixing layer in the
second regime.

subtracted away. The shock wave is not present in all of the vector fields, and when
it is present, it has varying strength. Because of the intermittency of its occurrence,
this shock wave is thought to be the result of small intermittent pressure mismatches
at the splitter-plate tip. When the pressures are perfectly matched, there is no shock
wave, but any variation between the pressures of the two free streams will cause a
weak shock wave or expansion fan to appear. The effect of these weak waves in the
high-speed free stream will be discussed again later.

Although figure 4 is a typical result for the velocity vector field, it is in no way
representative of all the vector fields. Indeed, the individual velocity fields comprising
the ensemble fall predominantly into three different regimes. The first regime is typified
by the vector field in figure 4, and is characterized by large-scale Brown–Roshko-like
roller structures similar to those observed in incompressible mixing layers, except with
more small-scale structures superimposed on the rollers.

The second regime contains vector fields similar to that shown in figure 5. This
velocity field has a number of smaller roller structures, some of which are moving at
different convective velocities to the others. For example, there is one roller structure
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Figure 6. A velocity vector field for the weakly compressible mixing layer in the third regime.

at (226 mm, −1 mm), another at (236 mm, −2 mm), a third at (250 mm, −2mm) and
a fourth at (255 mm, −3 mm). The second, third and fourth roller structures are not
as visible as the first, most probably because they are moving at a different convective
velocity to the first, so that the circulation pattern about these structures is not as
readily apparent. Also, each of these structures is smaller than the two large structures
present in figure 4. This observation of a second flow regime is in agreement with
the results of Clemens & Mungal (1995), who observed that at Mc = 0.42, large-scale
structures, although present, were disorganized and intermittent.

An example of a velocity vector field in the third regime is presented in figure 6.
This vector field contains little evidence of large-scale structures, and instead appears
to be dominated by small-scale structures. There may be a small roller structure
located near (230 mm, −2 mm), although it is apparently moving at a convective
velocity different from 390 m s−1. In addition, there appears to be a stagnation region
at (245 mm, −2 mm), but other than these two features, there are no readily discernible
large structures. The three flow regimes observed in these experiments are consistent
with previous flow-visualizations (Messersmith & Dutton 1996; Clemens & Mungal,
1995; Elliott et al. 1995), where large variability in flow structure was seen in the
image ensembles for compressible mixing layers.
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Figure 7. Close-up of the interaction of two roller structures showing a possible pairing.

3.2.3. Structure pairing

In incompressible mixing layers, one mechanism for mixing-layer growth is the
pairing of two or more large-scale structures into a larger structure (Browand &
Latigo 1979). This pairing process has also been observed in the current weakly
compressible mixing layer. One example of a possible roller pairing is presented in
figure 7. In this figure, there is a horizontally oriented elliptical roller structure centred
at (229 mm, 4 mm) with a smaller circular roller structure to its lower right-hand side.
These two roller structures appear to have progressed in the pairing process, as the
stagnation region between them has completely disappeared. There is also a large
region of circulation around both of the rollers, indicating that the two structures
have begun to act as a single structure.

Figure 8 shows another pair of roller structures in the process of pairing to form
a larger structure. These two structures have nearly completed the pairing process.
There is a large circular roller structure centred at (230 mm, −1mm), and to its lower
right-hand side the remnants of a smaller structure can be seen. This smaller structure
appears as a small bump on the larger roller structure and is somewhat difficult to
discern.

Each of the velocity fields in the ensemble that depict roller pairing are similar
to those in figures 7 and 8 in that the trailing roller is always at an angle of
approximately 45◦ and above the leading roller. The two interacting roller structures
are never observed to be oriented with one on top of the other. Although the ensemble
size is certainly small, this might suggest that for the weakly compressible case, instead
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Figure 8. Close-up of the interaction of two roller structures showing late stages of a
possible pairing.

of the ‘rotational pairing’ that is observed in incompressible mixing layers (Browand
& Latigo 1979), the two rollers merge by a ‘slapping’ mechanism in which there is little
rotation of the structures about each other. This is consistent with the Mie scattering
cinematography results of Mahadevan & Loth (1994) for compressible mixing layers.

3.2.4. Mean velocities and reynolds stresses

Although the ensemble of 37 velocity vector fields is relatively small, a method
was devised to obtain more reliable velocity statistics for the PIV vector fields. Mean
velocity and Reynolds stress profiles were created by collapsing the 70 columns of
velocity vectors in each of the fields into a single column. Some error is introduced
in doing this because the mixing layer grows as it moves downstream, and thus it
is thicker on the right-hand edge of the vector field than on the left. The growth
rate is small, however, and thus, its effect is believed to be negligible. Recall from
the schlieren results that dδω/dx = 0.038. This results in the vorticity thickness of
the mixing layer increasing by about 10% from the left-hand side of the velocity
vector field to the right. Collapsing the velocity field columns results in an ensemble
of 2590 realizations at each transverse location, an ensemble large enough to provide
reliable velocity statistics. These are not 2590 completely independent realizations,
however, as multiple realizations are obtained from a single velocity vector field; but
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Figure 9. Mean u-velocity profile as measured by PIV.
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Figure 10. Mean v-velocity profile as measured by PIV.

rather represent velocity measurements obtained at high-data density over a relatively
limited number of turbulent structures.

The mean u-velocity profile as measured by PIV is shown in figure 9. It has the
same error-function-type shape as the fully developed mean u-velocity profile for the
incompressible mixing layer (Brown & Roshko 1974). The y-axis has been normalized
by the vorticity thickness, a procedure that will be followed in all of the profile plots
presented. Also, in this figure and in the other statistical profiles to follow, y0 is
defined as the point where the mean u-velocity is equal to the average of the top and
bottom free-stream velocities.

The mean v-velocity profile is shown in figure 10. This velocity profile has both a
negative peak in the upper portion of the mixing layer and a positive peak in the
lower portion, indicating entrainment of fluid into the mixing layer from each of
the free streams. In addition, the peaks are skewed toward the high-speed stream.
This phenomenon was also observed in similar PIV experiments performed for an
incompressible mixing layer (Olsen 1999; Olsen & Dutton 2002), but for the weakly
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Figure 11. Reynolds stress profiles as measured by PIV.

compressible case, the effect is much more pronounced. Another point to note is that
the magnitudes of the v-velocity are small compared to those for the incompressible
mixing layer. Since the mean v-velocity is directly related to the entrainment of fluid
from each of the free streams, the reduction of the mean v-velocity with increasing
compressibility demonstrates a major effect of compressibility on mixing layers,
namely that mixing layer growth rate decreases with increasing convective Mach
number. This effect has been observed both experimentally (Elliott & Samimy 1990;
Goebel & Dutton 1991) and computationally (Sandham & Reynolds 1989, 1991;
Nelson & Menon 1998) and is confirmed here.

The Reynolds stress profiles are shown in Figure 11. The Reynolds normal stresses,
〈u′u′〉 and 〈v′v′〉, are seen to peak near the centre of the mixing layer and decay
moving away from the centre of the mixing layer. Although 〈v′v′〉 increases again in
the top free stream, this is not caused by increased turbulence in the top free stream,
but is instead a result of the slight turning of the velocity vectors in those vector
fields that contain the oblique shock wave discussed earlier. In each of the individual
vector fields, there is low turbulence in the top free stream. However, the v-velocity
in the top free stream varies from vector to vector depending on whether or not the
oblique shock wave is present, and this creates ‘false turbulence’. The Reynolds shear
stress 〈u′v′〉 also peaks at the centre of the mixing layer and decays moving towards
the free streams and has the expected negative values.

In previous PIV measurements of an incompressible mixing layer (Olsen & Dutton
2002), which were performed at a Reynolds number of Reδω

= 1.1 × 104, the peak
values of 〈u′u′〉/(�U )2, 〈v′v′〉/(�U )2, and 〈u′v′〉/(�U )2 were 0.032, 0.026 and −0.010,
respectively. For the current weakly compressible mixing layer, these same quantities
have peak values of 0.036, 0.017 and −0.010. This suppression of 〈v′v′〉 with increasing
compressibility is consistent with previous compressible mixing-layer research (Goebel
& Dutton 1991). Generally, turbulence intensities (square root of normal stresses) are
presented in the literature and not the Reynolds normal stresses. The peak values of
the turbulence intensities and also the Reynolds shear stress are shown in table 1,
along with the results from previous experiments for convective Mach numbers near
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Experiment Rex Reδω
Mc 〈u′〉/�U 〈v′〉/�U |〈u′v′〉/(�U )2|

Present 1.8 × 105 1.1 × 104 0.02 0.18 0.16 0.010
3.7 × 106 1.8 × 105 0.38 0.19 0.13 0.010

Goebel & Dutton (1991) 3.1 × 106 7.0 × 104 0.20 0.22 0.15 0.017
4.8 × 106 1.3 × 105 0.46 0.17 0.10 0.0086

Urban & Mungal (1998) 3.4 × 106 1.5 × 105 0.25 0.17 0.13 0.012
5.3 × 106 4.0 × 105 0.63 0.16 0.09 0.008

Samimy & Elliott (1990) – – 0.51 0.16 0.11 0.008
– – 0.64 0.15 0.10 0.008

Table 1. Comparison of turbulence quantities for compressible mixing-layer experiments.

the current value of 0.38. Although none of the previous experiments were performed
at exactly the same Mc as the present experiment, the current results do seem to agree
with the previous results. However, it is difficult to draw definitive conclusions from
the present experiment because the convective Mach number is substantially lower
than those reported by previous researchers.

3.2.5. Vorticity and strain rate

One major advantage of PIV over other velocimetry techniques is that the
instantaneous nature of the PIV planar velocity fields allows for the calculation
of instantaneous derivative quantities such as vorticity and strain rate. Figure 12 is
the instantaneous vorticity field derived from the velocity field shown in figure 4.
PIV results for an incompressible mixing layer (Olsen & Dutton 2002) revealed that,
in general, negative peaks in vorticity correspond to the centres of roller structures.
There are several negative peaks of vorticity in figure 12, and the two largest of
these do seem to correspond to the roller structures seen in the velocity field. There
are other smaller vorticity peaks in figure 12, and these are due to the presence of
small-scale turbulence in the mixing layer. There is also non-zero vorticity in each of
the free streams owing to small-scale turbulent structures located there. It is important
that roller structures correspond to negative peaks in vorticity in that negative peaks
in vorticity can be used to define an event based upon which the linear stochastic
estimate of a roller structure can be found.

The instantaneous shear strain rate field for the velocity field shown in figure 4 is
presented in figure 13. The incompressible mixing-layer PIV experiments indicated
that, in general, negative peaks in strain rate corresponded to the location of braids.
Such a negative peak in strain does occur directly below what visually appears to be
a braid in the velocity vector field of figure 13. The fact that the two do not coincide
is most probably a consequence of the braid moving at a convective velocity different
to the value subtracted from the vector field. There are also positive peaks of shear
strain in the mixing layer, and these generally correspond to the roller structures.
Some non-zero strain peaks are seen both in the top and bottom free streams, a
consequence once again of free-stream turbulence. With it having been determined
that negative peaks in shear strain correspond to braid structures, this information
can be used in defining an event to determine the linear stochastic estimate of a braid.

3.2.6. Spatial correlations

Because of the instantaneous two-dimensional nature of the PIV vector fields,
spatial velocity fluctuation correlations can also be determined easily. First, spatial
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Figure 16. The spatial correlation Ru′v′ for the weakly compressible mixing layer.

correlations were calculated using thirteen basis points in each vector field. These basis
points were all on the transverse centreline of the mixing layer (where the centreline
is defined by those points where the velocity is the mean of the two free streams) and
were equally spaced in the x-direction. For each of these points, the spatial correlation
was calculated as

〈u′
i(x, y)u′

j (x, y; X, Y )〉 = u′
i(x, y)u′

j (x + X, y + Y ), (3)

where (x, y) are the coordinates of the basis point (the point about which the spatial
correlation is calculated) and (X, Y ) are the displacements from the basis points. For
these calculations, the area over which the spatial correlation is calculated is a square
of 41 vectors by 41 vectors centred on the basis point. The ensemble average of
the spatial correlations for all of the basis points (481 realizations in all) was then

calculated and normalized by
√

〈u′
i(x, y)〉〈u′

j (x, y)〉 resulting in

Ru′
iu

′
j
(x, y; X, Y ) =

〈u′
i(x, y)u′

j (x, y; X, Y )〉√
〈u′

i(x, y)〉〈u′
j (x, y)〉

. (4)

The spatial correlation Ru′u′ for the weakly compressible mixing layer is shown in
figure 14. The corresponding spatial correlation for an incompressible mixing layer
has been previously calculated and presented (Olsen & Dutton 2002). In both the
incompressible and compressible cases, the correlation is a horizontally oriented
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ellipse. This shape is expected for a mixing layer dominated by roller structures
and braids. Along the mixing-layer centreline, the u-velocity fluctuation varies slowly
because each individual large-scale structure convects downstream with a nearly
constant u-velocity. The Ru′u′ correlation thus remains high over long distances in
the x-direction. There is not a corresponding long correlation distance in the y-
direction, however. Along a line of constant x, there are differing fluctuations around
the mean u-velocity as the y-location is varied. Thus, Ru′u′ drops off quickly in the
y-direction. For the incompressible mixing layer, the Ru′u′ =0.4 contour extends from
about ±1.4δω in the x-direction to +0.4δω and −0.7δω in the y-direction. However,
for the weakly compressible mixing layer, the Ru′u′ = 0.4 contour extends from only
±0.8δω in the x-direction to only +0.4δω and −0.3δω in the y-direction.

The spatial correlation function Rv′v′ for the weakly compressible mixing layer
as measured by PIV is shown in figure 15, and this can be compared with the
corresponding function for an incompressible mixing layer that has been previously
presented elsewhere (Olsen & Dutton 2002). Unlike Rv′v′ for the incompressible mixing
layer, which is a vertically oriented ellipse, the correlation field for the weakly com-
pressible mixing layer is essentially circular. This shape is consistent with horizontally
oriented elliptical roller structures for the weakly compressible case (see § 3.2.7). For
the incompressible mixing layer, which contained circular rollers, the v-velocity at the
centre of a roller was zero, but to the right-hand side of the structure the v-velocity
quickly became negative, and to the left-hand side of the roller structure the v-velocity
quickly became positive. It was this rapid variation in the v-velocity fluctuation that
led to short correlation distances in the x-direction for the incompressible case. The
circular shape of the Rv′v′ contours for the weakly compressible mixing layer suggests
relatively longer correlation distances of the v-velocity fluctuations in the x-direction.
This means that the variation in v-velocity is not as rapid and, thus, there is near-zero
v-velocity fluctuation over longer distances in the x-direction, a characteristic found
in horizontally oriented elliptical rollers. As was the case for Ru′u′ , the Rv′v′ correlation
field is seen to be smaller for the weakly compressible mixing layer than for the
incompressible mixing layer. For the incompressible case, the Rv′v′ = 0.4 contour
extends from approximately ±0.5δω in the x-direction to +0.6δω and −1.0δω in the y-
direction. For the weakly compressible mixing layer, however, the 0.4 contour extends
from only about ±0.4δω in the x- and y-directions.

The question must be addressed as to whether the different shapes and sizes
of the correlation functions in the weakly compressible and incompressible cases
are a function of the higher Reynolds number in the weakly compressible case
or if the different shapes are an effect of compressibility. This can be answered
by considering the experimental results of Tung (1982). Tung measured spatial
correlations for an incompressible mixing layer using an array of hot wires. In his
experiments, Reδω

= 4.7 × 104, which is larger than for the incompressible correlation
fields previously measured by us. Comparing the shapes of the correlation fields for
the two incompressible experiments shows that the correlation fields have exactly the
same shapes. The only effect of increasing the Reynolds number is that the correlation
fields become smaller. Thus, it can be concluded that the difference in the shapes of
the spatial correlation fields for the weakly compressible mixing layer with respect to
those for the incompressible mixing layer are a result of compressibility, not increasing
Reynolds number, and the difference in the relative sizes of the correlation functions
is a result of the higher Reynolds number in the weakly compressible case.

The spatial correlation function Ru′v′ is presented for the weakly compressible
mixing layer in figure 16. Once again, these spatial correlations are compared with
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the corresponding correlation for an incompressible mixing layer. In both cases, the
Ru′v′ correlation field is seen to be relatively noisy owing to the small ensemble size.
Figure 16 does have a peak value of 0.47 in the centre (i.e. zero displacement),
however, which is consistent with the LDV measurements of Goebel & Dutton
(1991), and is very similar to the peak value in the incompressible case (0.46). Just
as for the other correlation fields presented, Ru′v′ for the weakly compressible mixing
layer appears to be smaller (owing to the higher Reynolds number), and perhaps
more horizontally oriented, than its counterpart for the incompressible mixing layer,
although quantitative comparisons are difficult because of the irregular shapes.

3.2.7. Linear stochastic estimation

It is possible to calculate conditional velocity fields from the spatial correlations
using a technique called linear stochastic estimation (Adrian et al. 1989). By properly
defining the conditions corresponding to a specific large-scale structure, the velocity
field representing that structure based on the spatial correlations can be calculated.
This was done for the weakly compressible mixing layer by choosing conditions
representative of both a roller and a braid. These results are compared to similar
calculations performed for an incompressible mixing layer (Olsen & Dutton 2002).

Generally, the event upon which a linear stochastic estimate is based is a velocity
fluctuation. Defining rollers and braids in a mixing layer by such an event will not
work, however, since the centres of roller structures and braids are characterized by a
velocity fluctuation of zero. Thus, the stochastic estimates of both rollers and braids
based on a velocity fluctuation will be identical. A different event must be chosen to
characterize roller structures and braids.

As discussed earlier, comparison of the individual velocity vector fields to their
corresponding vorticity and rate-of-strain fields leads to the conclusion that rollers
correspond to peaks in vorticity and braids correspond to peaks in strain. A
linear stochastic estimate for mixing-layer structures can then be constructed by
incorporating this information. The linear stochastic estimate is based on the local
deformation at some location x0 and is given by

〈u′
i(x)|dij (x0)〉 = Ai(x) + Bijk(x)djk(x0), (5)

where djk is the deformation tensor. The coefficients Ai(x) and Bijk(x) are then
calculated by minimizing the mean square error of the estimate. This yields the results

Ai(x) = 0, (6)

〈uj,k(x0)ul,m(x0)〉Bijk(x) =
∂Ru′

lu
′
i

∂xm

, (7)

which is a set of eight equations (i, l, m = 1, 2) that can be solved to obtain Bijk(x).
Then, using a given value for the deformation tensor at location x0, equation (5) can
be used to find the linear stochastic estimate of the velocity field.

As a first step in this analysis, several instantaneous vector fields were analysed
to find typical deformation tensor values at the centres of both roller structures and
braids. For a roller, the deformation tensor is

djk =

∣∣∣∣−2000 50 000
20 000 2000

∣∣∣∣ ,
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Figure 17. Linear stochastic estimate of a roller structure for the weakly compressible
mixing layer.

and for a braid, the deformation tensor is

djk =

∣∣∣∣ −1375 −12 500
−35 750 −1500

∣∣∣∣ ,

where the units are s−1. These values were then used to calculate the linear stochastic
estimates of both rollers and braids for the weakly compressible mixing layer.

The linear stochastic estimate for a roller structure in the weakly compressible
mixing layer is shown in figure 17. This figure demonstrates that the linear stochastic
estimate is an effective technique for determining the features of large-scale structures
present in the mixing layer. This is because the linear stochastic estimate behaves like
a low-pass filter, eliminating the contributions of small-scale structures (which are
very prevalent in the weakly compressible mixing layer owing to the high Reynolds
number) and highlighting the underlying large-scale structures.

In figure 17, the linear stochastic estimate of a roller structure in the weakly
compressible mixing layer is seen to be elliptical with a horizontal major axis.
In contrast, the linear stochastic estimate of a roller in an incompressible mixing
layer (Olsen & Dutton 2002) is more circular. This effect of compressibility on roller
structures is consistent with the direct numerical simulations of Sandham & Reynolds
(1989, 1991), who found that in a compressible mixing layer, vortices are elongated
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Figure 18. Linear stochastic estimate of a braid for the weakly compressible mixing layer.

in the streamwise direction compared to the vortices found in incompressible mixing
layers. They also believed that the elongated structures could not entrain as much
fluid as the nearly circular structures in incompressible mixing layers, and would thus
lead to a smaller growth rate. Indeed, the schlieren photograph presented in figure 3
and also the mean v-velocity profile of figure 10 confirmed that the growth rate
of the present weakly compressible mixing is much less than that of a comparable
incompressible mixing layer. Thus, it seems that one effect of compressibility is
to increase the eccentricity of roller structures, which in turn leads to a diminished
mixing-layer growth rate. This elongation of large-scale structures with compressibility
also agrees well with the planar Mie scattering visualization results of Messersmith
& Dutton (1996). Messersmith & Dutton also observed that the elongated structures
are at an angle of about 26◦ with respect to horizontal. While the conditional roller
structure in figure 17 is angled slightly with respect to horizontal, the angle is far less
than that measured by Messersmith & Dutton. This can possibly be attributed to
Messersmith & Dutton correlating a scalar quantity, whereas the structure in figure 17
is based on correlations of the velocity.

The linear stochastic estimate of a braid structure in a weakly compressible mixing
layer is presented in figure 18. Once again, comparison can be made with the
linear stochastic estimate of a braid in an incompressible mixing layer (Olsen &
Dutton 2002). Both estimates are somewhat similar in appearance, although the
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incompressible braid is obliquely oriented while the weakly compressible braid is
vertically oriented. In addition, in the weakly compressible braid, stagnation occurs
along a vertically oriented line, whereas for the incompressible braid, stagnation
occurs at a point. Indeed, the braid near the centre of the velocity vector field
in figure 4 does appear to have a vertically oriented braid, as the linear stochastic
estimate suggests. Clemens & Mungal (1995) also observed a change in braid structure
with increasing compressibility in their flow-visualization experiments. In their low
convective Mach number case (Mc = 0.28), they observed braid structure similar to
that found in incompressible mixing layers. However, as the convective Mach number
was increased to 0.42, the braid regions developed a ‘kink’, which became more
noticeable as Mc was increased even further. As with Messersmith & Dutton, the
results of Clemens & Mungal are based on measurements of a scalar quantity, not
velocity. The observed kink in the scalar field may be attributed to changes in the
velocity field that manifest themselves as a vertically oriented stagnation region.

4. Conclusions
An ensemble of 37 high-vector density PIV velocity fields was obtained for a weakly

compressible mixing layer with Mc = 0.38. The individual velocity fields fell into three
regimes. The first regime is characterized by large Brown–Roshko-like roller structures
that are typical of incompressible mixing layers. The second regime also contains
similar structures, but these are smaller than those in the first regime. The third
regime of velocity fields showed little, if any, discernible large-scale structure. This
observation of intermittent and disorganized large-scale structure is consistent with
previous flow-visualization studies. Pairing of roller structures also seemed to occur,
but unlike in an incompressible mixing layer, for which the pairing mechanism involves
rotation of the two interacting roller structures, pairing in the weakly compressible
mixing layer seems to occur through a ‘slapping’ mechanism, with little transverse
movement of the two interacting rollers.

The planar velocity fields were also reduced to a single transverse profile to yield
reliable velocity statistics. The peak values of 〈u′〉/�U, 〈v′〉/�U and 〈u′v′〉/(�U )2

were found to be 0.19, 0.13 and −0.010, respectively. These agree well with the results
of previous LDV experiments by Goebel & Dutton (1991) and PIV experiments of
Urban & Mungal (1997, 1998) and Urban et al. (1998), and demonstrate the effects
of compressibility on the mixing-layer statistical quantities. These effects are that the
transverse turbulence intensity and Reynolds shear stress are suppressed, while the
streamwise turbulence intensity remains constant with increasing convective Mach
number.

The planar velocity data were also used to calculate the spatial correlation fields of
velocity fluctuations for the weakly compressible mixing layer. The Ru′u′ correlation
is elliptical with a streamwise-oriented major axis. This is similar to the shape seen
in the Ru′u′ correlation for an incompressible mixing layer. The Rv′v′ correlation is
nearly circular. This is very different from the same correlation for an incompressible
mixing layer, which is a vertically oriented ellipse. The Ru′v′ correlation is somewhat
noisier than the other two correlations, most probably due to the limited ensemble
size, but appears to be circular with a peak value of 0.47 at the origin. The shapes
of these correlation functions suggest flattened elliptical roller structures with the
major axis oriented in the streamwise direction. The changes in the shapes of the
correlation functions in the weakly compressible case are believed to be a result of
compressibility and not of higher Reynolds number. The correlation fields for the
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weakly compressible mixing layer decay more quickly with increased displacement
from the basis points than those found in an incompressible mixing layer. This is to
be expected, as the Reynolds number was much greater for the weakly compressible
mixing layer than for the incompressible case.

Finally, linear stochastic estimation yielded insights into the characteristics of the
large-scale structures found in the weakly compressible mixing layer, and the effects
of compressibility on these structures. In the weakly compressible case, the linear
stochastic estimate of a roller is a flattened, elliptical structure with a horizontal
major axis. This differs from the linear stochastic estimate for an incompressible
mixing layer, which was less eccentric. Increasing eccentricity in roller structure shape
with increasing compressibility has been observed in previous flow visualization
and computational work. The linear stochastic estimate of a braid in the weakly
compressible mixing layer is vertically oriented, as opposed to the estimate of a braid
for the incompressible case, which was obliquely oriented. Also, the braid in the
weakly compressible mixing layer has a vertically oriented stagnation line, whereas
in the incompressible case, stagnation was seen to occur at a point. This is consistent
with earlier flow visualization work which also showed changes in braid structure
with increasing compressibility.

Support for this work was provided by the US Army Research Office (Grant
no. DAAG55-97-1-0122) with Dr Thomas L. Doligalski as monitor. The authors also
thank Professor Ronald J. Adrian for his help in formulating the linear stochastic
estimation results.
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